COMPANY

JLK Inc.
Healthcare technology company based in Seoul, Korea
Founded 2014Seoul, Korea
Company: JLK Inc. Product: JBS-04K
Neuroradiology, 2025
Purpose
Intracranial hemorrhage (ICH) requires urgent treatment, and accurate and timely diagnosis is essential for improving outcomes. This pivotal clinical trial aimed to validate a deep learning algorithm for ICH detection and assess its clinical utility through a reader performance test.
Methods
Retrospective CT scans from patients with and without ICH were collected from a tertiary hospital. Two experts evaluated all scans, with a third expert reviewing disagreements for the final diagnosis. We analyzed the performance of the deep learning algorithm, JLK-ICH, for all cases and ICH subtypes. Additional external validation was performed using a multi-ethnic U.S.
Dataset
A reader performance study included six non-expert readers who evaluated 800 CT scans, with and without JLK-ICH assistance, following a washout period. ICH presence and five-point scale confidence level for decisions were rated.
Results
A total of 1,370 CT scans were evaluated. The deep learning model showed 98.7% sensitivity (95% confidence interval [CI] 97.8-99.3%), 88.5% specificity (95% CI, 83.6-92.3%), and an area under the receiver operating characteristic curve (AUROC) of 0.936 (95% CI, 0.915-0.957). The model maintained high accuracy across all ICH subtypes, and additional external validation confirmed these results. In the reader performance study, AUROC with JLK-ICH assistance (0.967 [0.953-0.981]) surpassed that without assistance (0.953 [0.938-0.957]; P = 0.009). JLK-ICH particularly improved performance when readers were highly uncertain.
Conclusion
The JLK-ICH algorithm demonstrated high accuracy in detecting all ICH subtypes. Non-expert readers significantly improved diagnostic accuracy for brain CT scans with deep learning assistance.