Company: Radiobotics Product: RBfracture
Real-life benefit of artificial intelligence-based fracture detection in a pediatric emergency department
European Radiology, 2025
Abstract
Objectives
This study aimed to evaluate the performance of an artificial intelligence (AI)-based software for fracture detection in pediatric patients within a real-life clinical setting. Specifically, it sought to assess (1) the stand-alone AI performance in real-life cohort and in selected set of medicolegal relevant fractures and (2) its influence on the diagnostic performance of inexperienced emergency room physicians.
Materials and methods
The retrospective study involved 1672 radiographs of children under 18 years, obtained consecutively (real-life cohort) and selective (medicolegal cohort) in a tertiary pediatric emergency department. On these images, the stand-alone performance of a commercially available, deep learning-based software was determined. Additionally, three pediatric residents independently reviewed the radiographs before and after AI assistance, and the impact on their diagnostic accuracy was assessed.
Results
In our cohort (median age 10.9 years, 59% male), the AI demonstrated a sensitivity of 92%, specificity of 83%, and accuracy of 87%. For medicolegally relevant fractures, the AI achieved a sensitivity of 100% for proximal tibia fractures, but only 68% for radial condyle fractures. AI assistance improved the residents' patient-wise sensitivity from 84 to 87%, specificity from 91 to 92%, and diagnostic accuracy from 88 to 90%. In 2% of cases, the readers, with the assistance of AI, erroneously discarded their correct diagnosis.
Conclusion
The AI exhibited strong stand-alone performance in a pediatric setting and can modestly enhance the diagnostic accuracy of inexperienced physicians. However, the economic implications must be weighed against the potential benefits in patient safety.
Read full study