A retrospective comparison of two AI tools for pediatric bone age assessment

visiana-bonexpert.png

Companies: Visiana, VUNO Products: BoneXpert, VUNO Med-BoneAge


A comparison of two artificial intelligence-based methods for assessing bone age in Turkish children: BoneXpert and VUNO Med-Bone Age

Diagnostic and Interventional Radiology, 2024

Abstract

Purpose

This study aimed to evaluate the validity of two artificial intelligence (AI)-based bone age assessment programs, BoneXpert and VUNO Med-Bone Age (VUNO), compared with manual assessments using the Greulich-Pyle method in Turkish children.

Methods

This study included a cohort of 292 pediatric cases, ranging in age from 1 to 15 years with an equal gender and number distribution in each age group. Two radiologists, who were unaware of the bone age determined by AI, independently evaluated the bone age. The statistical study involved using the intraclass correlation coefficient (ICC) to measure the level of agreement between the manual and AI-based assessments.

Results

The ICC coefficients for the agreement between the manual measurements of two radiologists indicate almost perfect agreement. When all cases, regardless of gender and age group, were analyzed, a nearly perfect positive agreement was observed between the manual and software measurements. When bone age calculations were separated and analyzed separately for girls and boys, there was no statistically significant difference between the two AI-based methods for boys; however, ICC coefficients of 0.990 and 0.982 were calculated for VUNO and BoneXpert, respectively, and this difference of 0.008 was significant (z = 2.528, P = 0.012) for girls. Accordingly, VUNO showed higher agreement with manual measurements compared with BoneXpert. The difference between the agreements demonstrated by the two software packages with manual measurements in the prepubescent group was much more pronounced in girls compared with boys. After the age of 8 years for girls and 9 years for boys, the agreement between manual measurements and both AI software packages was equal.

Conclusion

Both BoneXpert and VUNO showed high validity in assessing bone age. Furthermore, VUNO has a statistically higher correlation with manual assessment in prepubertal girls. These results suggest that VUNO may be slightly more effective in determining bone age, indicating its potential as a highly reliable tool for bone age assessment in Turkish children.

Read full study